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Among human actions threatening biodiversity, the release of
anthropogenic chemical pollutants which have become ubiquitous in the
environment, is a major concern. Chemical pollution can induce damage
to macromolecules by causing the overproduction of reactive oxygen
species, affecting the redox balance of animals. In species undergoing
metamorphosis (i.e. the vast majority of the extant animal species),
antioxidant responses to chemical pollution may differ between pre-
and post-metamorphic stages. Here, we meta-analysed (N=104 studies,
k=2283 estimates) the impact of chemical pollution on redox balance
across the three major amphibian life stages (embryo, tadpole, adult).
Before metamorphosis, embryos did not experience any redox change
while tadpoles activate their antioxidant pathways and do not show
increased oxidative damage from pollutants. Tadpoles may have evolved
stronger defences against pollutants to reach post-metamorphic life stages.
In contrast, post-metamorphic individuals show only weak antioxidant
responses and marked oxidative damage in lipids. The type of pollutant
(i.e. organic versus inorganic) has contrasting effects across amphibian
life stages. Our findings show a divergent evolution of the redox balance
in response to pollutants across life transitions of metamorphosing
amphibians, most probably a consequence of differences in the ecological
and developmental processes of each life stage.

1. Introduction

Anthropogenic pollution is considered a major cause of biodiversity loss
worldwide [1]. In particular, chemical organic and inorganic pollutants such
as pesticides, metallic elements or pharmaceuticals are released daily into
ecosystems through multiple sources, often resulting in novel and stressful
conditions for wildlife [2]. The susceptibility of organisms to these pollutants
could change over the course of their lifetime, which could be especially
important for species with a life cycle that includes abrupt life transitions such
as metamorphosis [3]. However, no study has systematically investigated to
what extent anthropogenic chemical pollutants impact physiology over the
life stages of metamorphosing species. Such an assessment would increase
our understanding of how chemical pollution impacts species’ resilience and
what the most vulnerable life stages are. This is essential knowledge for
developing conservation actions and reducing biodiversity loss.

Reactive oxygen species (ROS) are unstable molecules generated from
exogenous sources (such as pollution and UV radiation) or as by-products of
cellular metabolic processes, with most produced during aerobic respiration
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in the mitochondria [4]. In low concentrations, ROS are critical for biological processes since they are involved in immune n

responses, detoxification and intracellular signalling [5,6]. However, exposure to ROS often causes cell damage, and when
the accumulation of ROS overpasses the capacity of antioxidant enzymes to counteract them, a cellular oxidative stress state
is induced [6,7]. Oxidative stress can damage essential biomolecules such as lipids, proteins or DNA, and finally lead to
reductions in organismal health and life expectancy [7,8]. The physiological mechanisms that maintain the redox balance are
thought to have a central systemic role and mediate life-history trade-offs, such as during adaptive growth or developmental
responses which often include elevated ROS production [9-12].

The antioxidant system is highly conserved across taxa and consists of a wide range of enzymatic and non-enzymatic
components that work synergistically to control ROS production and achieve redox homeostasis [13]. The first line of defence
in response to oxidative damage involves the endogenously produced enzymatic scavengers such as superoxide dismutase,
catalase, glutathione peroxidase or glutathione reductase [14]. The second line of defence involves scavenging non-enzymatic
antioxidants with a low molecular weight that allows detoxifying ROS located in cellular areas where large enzymes cannot
reach [13]. The tripeptide-reduced glutathione (GSH) is the most abundant non-enzymatic molecule in animal cells and can
directly scavenge ROS or work in conjunction with antioxidant enzymes [5]. The redox balance is therefore set by the action of
enzymatic and non-enzymatic antioxidant pathways [7]. Finally, some substances are produced under a scenario of oxidative
stress as a result of damage to essential biomolecules. Malondialdehyde (an end product of the peroxidation of polyunsaturated
fatty acids) is the most common marker of oxidative damage in the lipids of the cell membrane [15,16]. Both the production of
ROS and the capacity to neutralize them can be influenced by chemical pollutants via diverse pathways [15,16].

Chemical pollutants exhibit distinct and complex modes of action and biological effects [15]. Pesticides, widely used in
agriculture to protect various crops from pests, frequently contaminate surface water in freshwater ecosystems [17]. They
disrupt cellular homeostasis by interacting with the mechanisms that regulate ROS production, resulting in oxidative stress
[17,18]. Notably, pesticides affect the Keapl/Nrf2/ARE pathway, which plays a pivotal role in controlling the expression of
antioxidant enzymes [17,18]. Moreover, the mitochondria play a critical role in energy production and cell death, and pesticides
inhibit mitochondrial complexes, impairing mitochondrial function and increasing ROS production [17]. Heavy metals released
from industrial waste accumulate in the bodies of aquatic organisms and interact with their organelles, posing significant health
risks [19]. Metals like cadmium and lead specifically target the mitochondria, altering the permeability of the mitochondrial
membrane. This leads to an increase in ROS and inhibits the activity of antioxidant enzymes, resulting in elevated oxidative
damage and increased cell death [19]. A mixture of pharmaceuticals and personal care products (PCPs) typically enters
aquatic ecosystems through wastewater discharge due to incomplete removal in water treatment plants [20]. Pharmaceuticals
encompass a wide variety of drugs, many of which are biologically active and are capable of inducing physiological effects
on freshwater organisms at low doses [20]. Prominent pollutants, including anti-inflammatory and antibiotic drugs, inhibit the
antioxidant machinery, increasing susceptibility to oxidative damage [21,22]. Similarly, PCPs such as cosmetics and sunscreens
contain chemicals and nanomaterials that persist in the environment [23]. Chemicals in these products, including antimicrobials
and UV filters, are lipophilic and permeate membranes, interfering with enzymatic activities and antioxidant responses [23].

The effect of anthropogenic chemical pollutants on an organism’s redox balance could be linked to an organism’s antioxidant
capability as well as its life mode. Both of these can change across an individual’s ontogeny. This is expected to be particularly
relevant across the life cycle of species undergoing metamorphosis, a major life transition undergone by approx. 80% of existing
animal species [3]. Metamorphosing species normally show three remarkably different stages (i.e. embryo, larva and adult)
with contrasting phenotypic and physiological characteristics. Among vertebrates, amphibians are an ideal group in which to
study the impact of chemical pollution on the redox balance across contrasting life stages. The life cycle of most amphibians,
particularly of anurans, includes an embryo that hatches into a fish-like tadpole that abruptly develops into a tetrapod juvenile
through metamorphosis [24]. Both embryos and tadpoles often have a highly permeable external surface/skin, and their habitat
is commonly restricted to the aquatic environment [25,26]. In contrast, post-metamorphic individuals normally develop less
permeable skin and, although they often rely on waterbodies for breeding, can normally inhabit the terrestrial environment [25].
Hence, the impact of substances released to water bodies, such as pollutants, is expected to vary across amphibian life stages,
with the embryonic and larval stages potentially being the most vulnerable [26]. Amphibians are the most threatened vertebrate
group, and chemical pollution is thought to be an important factor in their decline [27]. Understanding the extent to which
pollutants adversely affect the amphibian redox state at different life stages will add important knowledge for the conservation
of these and other metamorphosing species.

During the last three decades, a considerable number of studies have investigated the effect of pollutants on the amphibian
redox balance either at their pre- or post-metamorphic stages. Making use of such information, we evaluate the impact of
anthropogenic chemical pollution (e.g. organic and inorganic pollutants) on different aspects of the redox machinery (enzymatic
and non-enzymatic antioxidant responses, and oxidative damage in lipids) in amphibians across their three major life stages
(embryo, tadpole, adult). We carried out a systematic literature review and meta-analysis to assess whether the impact of
chemical pollutants on the amphibian redox balance varies across amphibian life stages. We predicted that exposure to
pollutants will increase ROS production in both pre- and post-metamorphic life stages. However, the external surface of
amphibian embryos and tadpoles is highly permeable and, therefore, can easily absorb water-borne chemicals, and they are
unable to evade aquatic pollutants. Therefore, we predicted they will have evolved a high antioxidant buffering mechanism,
which will provide more protection against pollutants. Consequently, since post-metamorphic amphibians are often less
exposed to chemical pollutants due to their impermeable skin and ability to evade unfavourable aquatic conditions by utilizing
terrestrial habitats [25], we predicted a lower antioxidant capacity which would result in high oxidative damage in the presence
of chemical pollution. Finally, since organic and inorganic pollutants have different modes of action, we expected that the
pollutant type will lead to different consequences on the amphibian redox balance across life stages.
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2. Methods

(a) Literature review

Studies of the effects of anthropogenic chemical pollutants on the redox balance of amphibians were identified via relevant
database searches conducted between the third and the tenth of March 2024. We used the search string, (‘oxidative stress’” OR
‘ROS’ OR ‘redox’ OR “antioxidant’) AND (“amphibian” OR “frog” OR ‘toad” OR “anuran’ OR “‘metamorphosis’) AND (‘pollution” OR
‘chemical pollutants” OR “water pollutants” OR “Chemical toxicity” OR ‘contaminant’ OR “contamination” OR “metal” OR “pesticide’
OR ‘“fungicide” OR ‘herbicide’ OR “insecticide’” OR ‘Pharmaceuticals’). We performed the search on EMBASE (Ovid), MEDLINE
(EBSCOhost), PubMed, Scopus and Web of Science [28]. The search string was entered in the respective fields for each database:
“Keyword” in EMBASE (Ovid), ‘Article title, Abstract, Keywords’ in Scopus, “Topic” in Web of Science, ‘All Fields’ in PubMed and
the ‘Find any of my search terms’ search mode in MEDLINE (EBSCOhost). We read the title and abstract of studies published
between 1974 (the earliest year with published data on the meta-analysed topic) and 2024 (the year the search was conducted), and
we assessed whether studies contained suitable information for our meta-analysis (details below). We identified 1376 studies via
the database searches above, plus nine additional studies that were identified from the reference list of screened studies (electronic
supplementary material, figure S1). After removing duplicates, 645 studies were screened by reading their title and abstract, and
240 studies were identified as potentially containing suitable information for the meta-analysis. These 240 studies were examined
in detail to assess whether they contained information that met the inclusion criteria (see details below). Database searches, study
screening and effect size extraction were all performed by one co-author (C.M.). Most of the data in the papers were presented
graphically, and thus numerical data was obtained using the digitalizing software WebPlotDigitiser version 4.4 [29], which has been
shown to be a valid and accurate method of data extraction for meta-analyses [30].

(b) Criteria for inclusion

We were interested in meta-analysing the effects of different pollutants on oxidative stress in amphibians based on control-
led laboratory conditions. Therefore, we only included experimental studies that reported: (i) mean oxidative stress values,
variation (standard deviation or standard error) and sample sizes (i.e. number of individuals) for control (i.e. non-exposed
to pollutants) and treatment groups (i.e. exposed to pollutants); (ii) one of the following indices markers of the oxidative
balance: superoxide dismutase, glutathione peroxidase, catalase, glutathione reductase, glutathione S-transferase (i.e. enzymatic
biomarkers), GSH (i.e. non-enzymatic biomarker) or malondialdehyde (i.e. a marker of oxidative damage in lipids); (iii) the
developmental stage (embryos, tadpoles or post-metamorphic) in which the effect of pollutants was tested. Additionally, we
only included effect sizes from studies that tested one pollutant at a time (i.e. studies not testing the effect of a pollutant in
combination with another factor) and studies conducted under laboratory conditions. The full list of pollutants included in this
study can be found in electronic supplementary material, table S1. The articles included in this study were not evaluated for
study quality during the screening process [28].

After assessing for inclusion (electronic supplementary material, figure S1), we extracted 2283 effect sizes from 104 studies
[21-23,31-127]. These 104 studies contained information from 35 amphibian species relatively well distributed across the globe
and the amphibian phylogeny (electronic supplementary material, figures S2 and S3). All these species are anurans with a life
cycle including an embryo, tadpole and adult (post-metamorphic) stage, and the dataset respectively included 169, 1148 and
966 oxidative stress estimates from these three life stages (see electronic supplementary material, table S2). The 10 pollutant
classes included in this study (fungicides, herbicides, metallic elements, nanoparticles, PCPs, pesticides, pharmaceuticals,
polychlorinated biphenyls, polycyclic aromatic and polyfluoroalkyl chemicals) were broadly grouped as an ‘organic compound’
or an ‘inorganic compound’ for analysis (electronic supplementary material, tables S1 and S2).

(c) Meta-analytic effect sizes

We compiled the dataset, ran all analyses, and produced visualizations using R (v. 4.3.3; [128]). To assess the effects of different
pollutants on the oxidative stress of amphibians, we computed the log response ratio (InRR) [129]. We calculated InRR and its
associated sampling variance using the R function “escalc’ in the ‘metafor” R package (v. 4.6-0; [130]). We calculated InRR so
that positive values meant higher values of a given oxidative stress biomarker in the treatment group (i.e. after the exposure to
a pollutant) than in the control group (i.e. not exposed to a pollutant), and vice versa for negative InRR values. When a given
control group was compared with multiple treatment groups, we divided the sample size of the control group by as many
comparisons the control group was used for, and we used this adjusted sample size to calculate InRR and its sampling variance
(98 observations were removed due to a final sample size lower than one). The reported control or treatment standard deviation
was zero for 46 observations. These data were retained in the analysis (assigning their standard deviation to 0.01) after checking
that their reported s.d. was correct.

(d) Meta-analysis

To assess how oxidative stress markers are affected by chemical pollution, we ran a phylogenetic multilevel (intercept-only)
meta-analysis and meta-regressions. These models included three random intercept effects: publication identity, phylogeny and
species identity, the latter to capture among-species variation not explained by phylogeny. Additionally, an observation identity
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Figure 1. Orchard plots showing the overall effect of pollutant exposure on (a) the redox machinery (i.e. pooling all the collected estimates), and (b) enzymatic and
non-enzymatic parameters, and indicators of oxidative damage in lipids of amphibian species undergoing metamorphosis. Coloured dots show means, a thick whisker
95% confidence interval and a thin whisker 95% precision interval. The precision (1/s.e.) of each study is represented in the background with scaled grey dots: the
bigger the point, the bigger the higher the precision. Positive values on the x-axis represent a higher level of a given parameter in response to a pollutant.

random term was included to capture variation in effect sizes within studies. For intercept-only models, we estimated total
heterogeneity (Piota]) [131] and the amount of variation explained by each random term as implemented in the R function
‘i2_ ml’ ("forchaRd’ R package v. 2.0 [132]). For meta-regressions, we report on the proportion of variation explained by each
moderator as calculated by the R function ‘r2_ml’ (‘orchaRd” R package v. 2.0 [132]).

To understand the overall effect of chemical pollution on the redox state, we ran two models. First, we ran an intercept-only
model that contained the random effect structure explained above and no moderators. Second, we ran a meta-regression, including
the random effect structure presented above and redox biomarker (‘enzymatic antioxidant’, ‘damage’ and ‘non-enzymatic
antioxidant’) as a moderator. To understand the effect of chemical pollution across amphibian life stages, we repeated the
meta-regression model presented above (i.e. including the ‘redox component” as a moderator) for embryo, tadpole and adult
life stages separately. To understand the effect of different chemical pollutants across amphibian life stages, we carried out
meta-regressions for each type of pollutant (i.e. organic and inorganic) for embryo, tadpole and adult life stages separately. These
models included the random effect structure presented above. Finally, we also examined the effect of pollutants on the amphibian
redox balance in different tissues types and found that the effect was similar across tissues (electronic supplementary material,
figure 54).

(e) Phylogenies

To control for phylogenetic history, we extracted phylogenetic trees from Open Tree of Life [133,134], accessed via the R package
‘rotl” (v. 3.1.0; [135]). Tree branch length was calculated following [136] and we generated a phylogenetic correlation matrix that
was included in all our models. We assessed the phylogenetic importance in our meta-models calculating the proportion of
variation in InRR explained by the phylogeny (thylogeny) [137].

(f) Publication bias

We tested small-study effects and time-lag effects following Nakagawa et al. [138] by running two additional multilevel
meta-analytic models of InRR. Each of these models included, as a single moderator, either the square root of the inverse of the
effective sample size or the mean-centred year of study publication [138,139].
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3. Results

(a) Overall effect of pollution on the redox balance of amphibians

An initial meta-analysis (i.e., intercept-only model) including all the oxidative stress parameters and life stages showed that
experimental exposure to pollutants increased the levels of redox balance components (i.e. enzymatic and non-enzymatic
antioxidants, and lipid damage) by 13% compared with control conditions (model intercept [95% confidence interval; ‘95% CI’
hereafter] = 0.126 [0.002, 0.251]; figure 1a). The total heterogeneity of this model was high (Piota1 = 99.98), with 2.72% and 2.75%
of it explained by species and phylogeny, respectively, and 26.85% explained by among-study differences.

Exposure to pollutants increased the levels of all studied redox markers, with 95% CI for model estimates not overlapping
zero for lipid damage (estimate [95% CI] = 0.278 [0.152, 0.404]; figure 1), and slightly overlapping zero for enzymatic antioxidants
(estimate [95% CI] = 0.100 [-0.018, 0.217]; figure 1b) and non-enzymatic antioxidants (estimate [95% CI] = 0.078 [-0.050, 0.207]; figure
1b).

(b) Effect of chemical pollution across amphibian life stages

Pollutants had a contrasting effect on the redox balance of embryos, tadpoles and adults. In embryos, pollutants did not increase
the levels of the non-enzymatic antioxidants (estimate [95% CI] = 0.047 [-0.442, 0.535]; figure 2a), enzymatic antioxidants
(estimate [95% CI] = -0.067 [-0.487, 0.352]; figure 2a) or lipid peroxidation (estimate [95% CI] = 0.151 [-0.428, 0.731]; figure
2a). The redox marker overall explained 0.68% of the heterogeneity in redox response to pollutants in embryos (i.e. rzrnarginal
= 0.68%). In tadpoles, pollutants increased to a similar extent the levels of the enzymatic and non-enzymatic antioxidants
(estimate ‘enzymatic’ [95% CI] = 0.164 [0.002, 0.326; figure 2b] and estimate ‘non-enzymatic’ [95% CI] = 0.127 [-0.062, 0.317];
figure 2b). In contrast, the effect of pollutants on lipid peroxidation in tadpoles was very low (estimate [95% CI] = 0.082
[-0.096, 0.260]; figure 2). Redox markers explained 0.30% of the overall variation in redox response to pollutants in tadpoles
(i.e. rzrnarginal = 0.30%). In adults, while pollutants had a weak effect both on the enzymatic (estimate [95% CI] = 0.081 [-0.051,
0.212]; figure 2¢) and non-enzymatic antioxidants (estimate [95% CI] = 0.083 [-0.056, 0.222]; figure 2c), lipid peroxidation levels
were substantially increased (estimate [95% CI] = 0.478 [0.338, 0.618]; figure 2c). Redox markers explained 10.72% of the overall
variation in redox response to pollutants in adults (i.e. szarginal =10.72%).

(c) Effect of type of pollutants on the amphibian redox state

We first investigated the effect of pollutants according to whether they were organic or inorganic contaminants. Inorganic
pollutants only had subtle effects on the redox balance of embryos (figure 3a). In contrast, organic pollutants increased both
the enzymatic and non-enzymatic response in tadpoles with no effect on their lipid peroxidation levels (‘enzymatic’ estimate
[95% CI] = 0.221 [0.010, 0.431], ‘non-enzymatic’ estimate [95% CI] = 0.365 [0.127, 0.602]; figure 3a) and, in adults, induced
lipid peroxidation but no antioxidant elevation (‘indicator” estimate [95% CI] = 0.477 [0.312, 0.641], figure 3a). The available
information for inorganic pollutants is much less; these only had weak effects on the non-enzymatic and enzymatic components
of the redox machinery of embryos and adults, respectively (figure 3b).

(d) Publication bias

We did not detect small-study effects in our dataset (estimate for the square root of the inverse of the effective sample size [95%
CI] = 0.030 [-0.234, 0.294]), with the overall model intercept after correcting for effective sample size being similar to the overall
model estimate without this correction (unbiased estimate [95% CI] = 0.108 [-0.091, 0.307]; overall model intercept presented
above = 0.126 [0.002, 0.251]). We also did not detect time-lag effects (estimate [95% CI] = -0.004 [-0.015, 0.008]).

4. Discussion

Human activities lead to the release of chemical pollutants into ecosystems, which is threatening biodiversity across the
globe. Our meta-analysis provides a comprehensive assessment of the impact of chemical pollution on amphibian redox state.
Overall, exposure to chemical pollutants increases levels of the key redox biomarkers, indicative of endogenous responses to
oxidative stress. However, this effect is life-stage-dependent: while embryos do not experience any variation in terms of their
redox components, tadpoles exhibit increased antioxidant responses and, overall, experience no elevation in oxidative damage
to lipids, and adults show a lack of antioxidant responses and marked lipid peroxidation. The type of pollutant also has
life-stage-specific effects on the redox components of amphibians, although the literature is biased towards the effect of specific
organic pollutants such as pesticides and herbicides.

The life cycle of most extant animal species includes some form of metamorphosis. This major life transition not only
includes conspicuous developmental transformations but also changes in nutrition, niche use and behaviour [3]. In meta-
morphosing amphibians, embryos and tadpoles have a permeable external surface and are often restricted to water bodies,
while post-metamorphic individuals generally have protective skin and the ability to explore both the aquatic and terrestrial
environments. In our meta-analysis, we found no effect of chemical pollutants on the redox state of embryos. The lack of
antioxidant response might be explained by the allocation of resources to somatic maintenance and development at the expense
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Figure 2. Orchard plots showing the effect of pollutants on the redox machinery (i.e. enzymatic and non-enzymatic components, and indicator of oxidative damage
in lipids) of amphibian embryos (a), tadpoles (b) and adults (c). Coloured dots show means, a thick whisker 95% confidence interval and a thin whisker 95% precision
interval. The precision (1/s.e.) of each study is represented in the background with scaled grey dots: the bigger the point, the bigger the higher the precision. Positive
values on the x-axis represent a higher level of a given parameter in response to a pollutant.

of experiencing a low antioxidant capacity, however, this does not explain the absence of oxidative damage which may be
due to the protective role of the embryo jelly. Embryos are the least represented group in our meta-analysis and thus further
information is still desirable. Our findings also show that the tadpole antioxidant machinery is upregulated against chemical
pollutants, which likely explains the lack of oxidative damage. This pattern contrasts with that observed in post-metamorphic
amphibians faced with pollutants, which show negligible antioxidant responses and marked oxidative damage. Differences in
ecological and developmental processes across amphibian life stages may have driven a divergent ability to cope with variations
in environmental pollution. In other words, the developmental processes experienced at each life stage, the likelihood of being
exposed to chemical pollutants and/or their lifestyle may have led to a divergent evolution of antioxidant responses across life
stages of metamorphosing species [140,141]. Oxidative stress is also thought to play a major role in modulating life-history
trade-offs, including the balance between important aspects of fitness such as growth and survival [9]. In metamorphosing
organisms challenged with pollutants, avoiding an oxidative stress state could allow pre-metamorphic individuals to reach
metamorphosis with a body size large enough to reduce post-metamorphic mortality rates [142,143]. At least two meta-analyses
have suggested that animals show stronger responses to stress at early stages than later in life, which could be a mechanism to
avoid developmental impairment and negative carry-over effects [144,145]. However, the evolution of redox responses across
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Figure 3. Orchard plots showing the effect of (a) organic and (b) inorganic pollutants, on the redox machinery (i.e. enzymatic and non-enzymatic components, and
indicator of oxidative damage in lipids) of amphibian embryos, tadpoles, and adults. Coloured dots show means, a thick whisker 95% confidence interval and a thin
whisker 95% precision interval. The precision (1/s.e.) of each study is represented in the background with scaled grey dots: the bigger the point, the bigger the higher
the precision. Positive values on the x-axis represent a higher level of a given parameter in response to a pollutant.

an organism’s lifespan may be constrained by its maintaining cost and its relationship with life histories, including phenotypic
plasticity [146,147]. Further empirical and comparative studies will disentangle whether life-stage-dependent redox responses
are context- and/or taxa-specific in species undergoing metamorphosis.

Chemical pollution commonly leads to negative consequences for wildlife. The mechanisms behind this process have been
well studied in some taxonomic groups responding to specific pollutants. Although the mechanisms of action can differ
between pollutants, both carbon- and non-carbon-based pollutants often cause metabolic and endocrine dysfunctions that can
finally result in molecular damage such as oxidative stress [148-150]. In amphibians with complex life cycles, the role of the
redox machinery in organisms coping with chemical pollution has been extensively investigated, hence allowing to meta-ana-
lyse life-stage-specific effects of such pollutants. Our study shows that, overall, chemical pollutants impact the redox balance
of amphibians hence altering oxidative eustress (i.e. the presence of low antioxidant levels found during normal metabolism
maintenance) and leading to oxidative distress (i.e. impaired eustress) [6,151]. These effects vary depending on the life stage and
the type of pollutant. It should be noted, however, that most of the available data come from studies on the effect of pesticides
conducted both in tadpoles and adults, and herbicides in tadpoles (both types are organic pollutants). With a global production
of two million tonnes, chemical pollutants are ubiquitous in the environment and often enter aquatic ecosystems, posing a
major threat to semi-aquatic amphibians [152]. The impact of these pollutants on the amphibian redox balance that we report
here might explain, at least partly, the decline of amphibian populations associated with chemical pollution [153]. Our study
highlights the need for further research on the impact of other chemical pollutants such as metallic elements or other inorganic
compounds on the redox balance of amphibians, for which the available information is still scarce. In this line, the impact of
emerging pollutants (e.g. microplastics) on the amphibian redox performance is still virtually unknown. More experimental
work to test the effect of these and other pollutants across all life stages will be needed to better understand the real-world
impact of chemical pollution on metamorphosing animals. This contrasts with the broad test of those and other pollutants in
behavioural studies [154]. Also, our meta-analysis only includes studies using a single pollutant (the most abundant throughout
the literature) and experiments combining several pollutants with different characteristics (e.g. chemicals with light or noise
pollution) are still scarce, however, they will improve our understanding of the wildlife responses to anthropic disturbed.

5. Conclusions

Our meta-analysis shows that the effect of chemical pollution on the redox balance of amphibians varies across the three major
life stages of metamorphosing amphibians. While embryos do not alter any of the studied redox components, tadpoles induce
antioxidant responses, but avoid oxidative damage, and adults show a lack of antioxidant response but pay an oxidative cost
in terms of increased lipid peroxidation. Our study also shows that the type of pollutant can shape the amphibian redox status,
which seems to be life-stage-dependent. Future studies will provide insights into the response to pollutants of different over the
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developmental trajectory of species undergoing metamorphosis. Experiments designed specifically to examine the link between [ 8 |

chemical pollutants, the redox balance and life histories of metamorphosing organisms are needed.
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